Unrecoverable Errors with panic

In Cairo, unexpected issues may arise during program execution, resulting in runtime errors. While the panic function from the core library doesn't provide a resolution for these errors, it does acknowledge their occurrence and terminates the program. There are two primary ways that a panic can be triggered in Cairo: inadvertently, through actions causing the code to panic (e.g., accessing an array beyond its bounds), or deliberately, by invoking the panic function.

When a panic occurs, it leads to an abrupt termination of the program. The panic function takes an array as an argument, which can be used to provide an error message and performs an unwind process where all variables are dropped and dictionaries squashed to ensure the soundness of the program to safely terminate the execution.

Here is how we can call panic from inside a program and return the error code 2:

Filename: src/lib.cairo

fn main() {
    let mut data = array![2];

    if true {
        panic(data);
    }
    println!("This line isn't reached");
}

Running the program will produce the following output:

$ scarb cairo-run 
   Compiling no_listing_01_panic v0.1.0 (listings/ch09-error-handling/no_listing_01_panic/Scarb.toml)
    Finished release target(s) in 1 second
     Running no_listing_01_panic
Run panicked with [2, ].
Remaining gas: 19999200

As you can notice in the output, the call to println! macro is never reached, as the program terminates after encountering the panic statement.

An alternative and more idiomatic approach to panic in Cairo would be to use the panic_with_felt252 function. This function serves as an abstraction of the array-defining process and is often preferred due to its clearer and more concise expression of intent. By using panic_with_felt252, developers can panic in a one-liner by providing a felt252 error message as an argument, making the code more readable and maintainable.

Let's consider an example:

use core::panic_with_felt252;

fn main() {
    panic_with_felt252(2);
}

Executing this program will yield the same error message as before. In that case, if there is no need for an array and multiple values to be returned within the error, panic_with_felt252 is a more succinct alternative.

panic! Macro

panic! macro can be really helpful. The previous example returning the error code 2 shows how convenient panic! macro is. There is no need to create an array and pass it as an argument like panic function.

fn main() {
    if true {
        panic!("2");
    }
    println!("This line isn't reached");
}

Unlike the panic_with_felt252 function, using panic! allows the input, which is ultimately the panic error, to be a literal longer than 31 bytes. This is because panic! takes a string as a parameter. For example, the following line of code will successfully compile:

panic!("the error for panic! macro is not limited to 31 characters anymore");

nopanic Notation

You can use the nopanic notation to indicate that a function will never panic. Only nopanic functions can be called in a function annotated as nopanic.

Here is an example:

fn function_never_panic() -> felt252 nopanic {
    42
}

This function will always return 42 and is guaranteed to never panic. Conversely, the following function is not guaranteed to never panic:

fn function_never_panic() nopanic {
    assert(1 == 1, 'what');
}

If you try to compile this function that includes code that may panic, you will get the following error:

error: Function is declared as nopanic but calls a function that may panic.
 --> test.cairo:2:12
    assert(1 == 1, 'what');
           ^****^
Function is declared as nopanic but calls a function that may panic.
 --> test.cairo:2:5
    assert(1 == 1, 'what');
    ^********************^

Note that there are two functions that may panic here, assert and equality with ==. We usually don't use assert function in practice and use assert! macro instead. We will discuss assert! macro in more detail in Testing Cairo Programs chapter.

panic_with Attribute

You can use the panic_with attribute to mark a function that returns an Option or Result. This attribute takes two arguments, which are the data that is passed as the panic reason as well as the name for a wrapping function. It will create a wrapper for your annotated function which will panic if the function returns None or Err, with the given data as the panic error.

Example:

#[panic_with('value is 0', wrap_not_zero)]
fn wrap_if_not_zero(value: u128) -> Option<u128> {
    if value == 0 {
        Option::None
    } else {
        Option::Some(value)
    }
}

fn main() {
    wrap_if_not_zero(0); // this returns None
    wrap_not_zero(0); // this panic with 'value is 0'
}