Enums

Enums, short for "enumerations," are a way to define a custom data type that consists of a fixed set of named values, called variants. Enums are useful for representing a collection of related values where each value is distinct and has a specific meaning.

Enum Variants and Values

Here's a simple example of an enum:

#[derive(Drop)]
enum Direction {
    North,
    East,
    South,
    West,
}

In this example, we've defined an enum called Direction with four variants: North, East, South, and West. The naming convention is to use PascalCase for enum variants. Each variant represents a distinct value of the Direction type. In this particular example, variants don't have any associated value. One variant can be instantiated using this syntax:

#[derive(Drop)]
enum Direction {
    North,
    East,
    South,
    West,
}

fn main() {
    let direction = Direction::North;
}

Now let's imagine that our variants have associated values, that store the exact degree of the direction. We can define a new Direction enum:

#[derive(Drop)]
enum Direction {
    North: u128,
    East: u128,
    Sout: u128,
    West: u128,
}

fn main() {
    let direction = Direction::North(10);
}

and instantiate it as follows:

#[derive(Drop)]
enum Direction {
    North: u128,
    East: u128,
    Sout: u128,
    West: u128,
}

fn main() {
    let direction = Direction::North(10);
}

In this code, each variant is associated to a u128 value, representing the direction in degrees. We will see in the next example that it is also possible to associate different data types to each variant.

It's easy to write code that acts differently depending on the variant of an enum instance, in this example to run specific code according to a direction. You can learn more about it in the Match Control Flow Construct section.

Enums Combined with Custom Types

Enums can also be used to store more interesting custom data associated with each variant. For example:

#[derive(Drop)]
enum Message {
    Quit,
    Echo: felt252,
    Move: (u128, u128),
}

In this example, the Message enum has three variants: Quit, Echo, and Move, all with different types:

  • Quit doesn't have any associated value.
  • Echo is a single felt252.
  • Move is a tuple of two u128 values.

You could even use a Struct or another enum you defined inside one of your enum variants.

Trait Implementations for Enums

In Cairo, you can define traits and implement them for your custom enums. This allows you to define methods and behaviors associated with the enum. Here's an example of defining a trait and implementing it for the previous Message enum:

trait Processing {
    fn process(self: Message);
}

impl ProcessingImpl of Processing {
    fn process(self: Message) {
        match self {
            Message::Quit => { println!("quitting") },
            Message::Echo(value) => { println!("echoing {}", value) },
            Message::Move((x, y)) => { println!("moving from {} to {}", x, y) },
        }
    }
}

In this example, we implemented the Processing trait for Message. Here is how it could be used to process a Quit message:


#[derive(Drop)]
enum Message {
    Quit,
    Echo: felt252,
    Move: (u128, u128),
}

trait Processing {
    fn process(self: Message);
}

impl ProcessingImpl of Processing {
    fn process(self: Message) {
        match self {
            Message::Quit => { println!("quitting") },
            Message::Echo(value) => { println!("echoing {}", value) },
            Message::Move((x, y)) => { println!("moving from {} to {}", x, y) },
        }
    }
}
fn main() {
    let msg: Message = Message::Quit;
    msg.process();
}

Running this code would print quitting.

The Option Enum and Its Advantages

The Option enum is a standard Cairo enum that represents the concept of an optional value. It has two variants: Some: T and None. Some: T indicates that there's a value of type T, while None represents the absence of a value.

enum Option<T> {
    Some: T,
    None,
}

The Option enum is helpful because it allows you to explicitly represent the possibility of a value being absent, making your code more expressive and easier to reason about. Using Option can also help prevent bugs caused by using uninitialized or unexpected null values.

To give you an example, here is a function which returns the index of the first element of an array with a given value, or None if the element is not present.

We are demonstrating two approaches for the above function:

  • Recursive approach with find_value_recursive.
  • Iterative approach with find_value_iterative.
fn find_value_recursive(mut arr: Span<felt252>, value: felt252, index: usize) -> Option<usize> {
    match arr.pop_front() {
        Option::Some(index_value) => { if (*index_value == value) {
            return Option::Some(index);
        } },
        Option::None => { return Option::None; },
    };

    find_value_recursive(arr, value, index + 1)
}

fn find_value_iterative(mut arr: Span<felt252>, value: felt252) -> Option<usize> {
    let mut result = Option::None;
    let mut index = 0;

    while let Option::Some(array_value) = arr
        .pop_front() {
            if (*array_value == value) {
                result = Option::Some(index);
            };

            index += 1;
        };

    result
}

Enums can be useful in many situations, especially when using the match flow construct that we just used. We will describe it in the next section.

Other enums are used very often, such as the Result enum, allowing to handle errors gracefully. We will explain the Result enum in detail in the Error Handling chapter.