Defining Modules to Control Scope
In this section, we’ll talk about modules and other parts of the module system,
namely paths that allow you to name items and the use
keyword that brings a
path into scope.
First, we’re going to start with a list of rules for easy reference when you’re organizing your code in the future. Then we’ll explain each of the rules in detail.
Modules Cheat Sheet
Here we provide a quick reference on how modules, paths and the use
keyword
work in the compiler, and how most developers organize their
code. We’ll be going through examples of each of these rules throughout this
chapter, but this is a great place to refer to as a reminder of how modules
work. You can create a new Scarb project with scarb new backyard
to follow along.
-
Start from the crate root: When compiling a crate, the compiler first looks in the crate root file (src/lib.cairo) for code to compile.
-
Declaring modules: In the crate root file, you can declare new modules; say, you declare a “garden” module with
mod garden;
. The compiler will look for the module’s code in these places:-
Inline, within curly brackets that replace the semicolon following
mod garden
.// crate root file (src/lib.cairo) mod garden { // code defining the garden module goes here }
-
In the file src/garden.cairo.
-
-
Declaring submodules: In any file other than the crate root, you can declare submodules. For example, you might declare
mod vegetables;
in src/garden.cairo. The compiler will look for the submodule’s code within the directory named for the parent module in these places:-
Inline, directly following
mod vegetables
, within curly brackets instead of the semicolon.// src/garden.cairo file mod vegetables { // code defining the vegetables submodule goes here }
-
In the file src/garden/vegetables.cairo.
-
-
Paths to code in modules: Once a module is part of your crate, you can refer to code in that module from anywhere else in that same crate, using the path to the code. For example, an
Asparagus
type in thevegetables
submodule would be found atcrate::garden::vegetables::Asparagus
. -
Private vs public: Code within a module is private from its parent modules by default. This means that it may only be accessed by the current module and its descendants. To make a module public, declare it with
pub mod
instead ofmod
. To make items within a public module public as well, usepub
before their declarations. Cairo also provides thepub(crate)
keyword, allowing an item or module to be only visible within the crate in which the definition is included. -
The
use
keyword: Within a scope, theuse
keyword creates shortcuts to items to reduce repetition of long paths. In any scope that can refer tocrate::garden::vegetables::Asparagus
, you can create a shortcut withuse crate::garden::vegetables::Asparagus;
and from then on you only need to writeAsparagus
to make use of that type in the scope.
Here we create a crate named backyard
that illustrates these rules. The
crate’s directory, also named backyard
, contains these files and directories:
backyard/
├── Scarb.toml
└── src
├── garden
│ └── vegetables.cairo
├── garden.cairo
└── lib.cairo
The crate root file in this case is src/lib.cairo, and it contains:
Filename: src/lib.cairo
pub mod garden;
use crate::garden::vegetables::Asparagus;
fn main() {
let plant = Asparagus {};
println!("I'm growing {:?}!", plant);
}
The pub mod garden;
line imports the garden
module. Using pub
to make garden
publicly accessible, or pub(crate)
if you really want to make garden
only available for your crate, is optional to run our program here, as the main
function resides in the same module as pub mod garden;
declaration. Nevertheless, not declaring garden
as pub
will make it not accessible from any other package.
This line tells the compiler to include the code it finds in src/garden.cairo, which is:
Filename: src/garden.cairo
pub mod vegetables;
Here, pub mod vegetables;
means the code in src/garden/vegetables.cairo is included too. That code is:
#[derive(Drop, Debug)]
pub struct Asparagus {}
The line use crate::garden::vegetables::Asparagus;
lets us bring the Asparagus
type into scope,
so we can use it in the main
function.
Now let’s get into the details of these rules and demonstrate them in action!
Grouping Related Code in Modules
Modules let us organize code within a crate for readability and easy reuse. Modules also allow us to control the privacy of items, because code within a module is private by default. Private items are internal implementation details not available for outside use. We can choose to make modules and the items within them public, which exposes them to allow external code to use and depend on them.
As an example, let’s write a library crate that provides the functionality of a restaurant. We’ll define the signatures of functions but leave their bodies empty to concentrate on the organization of the code, rather than the implementation of a restaurant.
In the restaurant industry, some parts of a restaurant are referred to as front of house and others as back of house. Front of house is where customers are; this encompasses where the hosts seat customers, servers take orders and payment, and bartenders make drinks. Back of house is where the chefs and cooks work in the kitchen, dishwashers clean up, and managers do administrative work.
To structure our crate in this way, we can organize its functions into nested
modules. Create a new package named restaurant by running scarb new restaurant
; then enter the code in Listing 7-1 into src/lib.cairo to
define some modules and function signatures. Here’s the front of house section:
Filename: src/lib.cairo
mod front_of_house {
mod hosting {
fn add_to_waitlist() {}
fn seat_at_table() {}
}
mod serving {
fn take_order() {}
fn serve_order() {}
fn take_payment() {}
}
}
We define a module with the mod
keyword followed by the name of the module
(in this case, front_of_house
). The body of the module then goes inside curly
brackets. Inside modules, we can place other modules, as in this case with the
modules hosting
and serving
. Modules can also hold definitions for other
items, such as structs, enums, constants, traits, and functions.
By using modules, we can group related definitions together and name why they’re related. Programmers using this code can navigate the code based on the groups rather than having to read through all the definitions, making it easier to find the definitions relevant to them. Programmers adding new functionality to this code would know where to place the code to keep the program organized.
Earlier, we mentioned that src/lib.cairo is called the crate root. The reason for this name is that the content of this file forms a module named after the crate name at the root of the crate’s module structure, known as the module tree.
Listing 7-2 shows the module tree for the structure in Listing 7-1.
restaurant
└── front_of_house
├── hosting
│ ├── add_to_waitlist
│ └── seat_at_table
└── serving
├── take_order
├── serve_order
└── take_payment
This tree shows how some of the modules nest inside one another; for example,
hosting
nests inside front_of_house
. The tree also shows that some modules
are siblings to each other, meaning they’re defined in the same module;
hosting
and serving
are siblings defined within front_of_house
. If module
A is contained inside module B, we say that module A is the child of module B
and that module B is the parent of module A. Notice that the entire module
tree is rooted under the explicit name of the crate restaurant.
The module tree might remind you of the filesystem’s directory tree on your computer; this is a very apt comparison! Just like directories in a filesystem, you use modules to organize your code. And just like files in a directory, we need a way to find our modules.