Tipos de Datos Genéricos

We use generics to create definitions for item declarations, such as structs and functions, which we can then use with many different concrete data types. In Cairo, we can use generics when defining functions, structs, enums, traits, implementations and methods. In this chapter, we are going to take a look at how to effectively use generic types with all of them.

Generics allow us to write reusable code that works with many types, thus avoiding code duplication, while enhancing code maintainability.

Funciones Genéricas

Making a function generic means it can operate on different types, avoiding the need for multiple, type-specific implementations. This leads to significant code reduction and increases the flexibility of the code.

Cuando definimos una función que utiliza genéricos, colocamos los genéricos en la firma de la función, donde normalmente especificaríamos los tipos de datos del parámetro y del valor de retorno. Por ejemplo, imaginemos que queremos crear una función que, dados dos Array de elementos, devuelva el mayor de ellos. Si necesitamos realizar esta operación para listas de distintos tipos, tendríamos que redefinir la función cada vez. Por suerte podemos implementar la función una vez usando genéricos y pasar a otras tareas.

// Specify generic type T between the angulars
fn largest_list<T>(l1: Array<T>, l2: Array<T>) -> Array<T> {
    if l1.len() > l2.len() {
        l1
    } else {
        l2
    }
}

fn main() {
    let mut l1 = array![1, 2];
    let mut l2 = array![3, 4, 5];

    // There is no need to specify the concrete type of T because
    // it is inferred by the compiler
    let l3 = largest_list(l1, l2);
}

The largest_list function compares two lists of the same type and returns the one with more elements and drops the other. If you compile the previous code, you will notice that it will fail with an error saying that there are no traits defined for dropping an array of a generic type. This happens because the compiler has no way to guarantee that an Array<T> is droppable when executing the main function. In order to drop an array of T, the compiler must first know how to drop T. This can be fixed by specifying in the function signature of largest_list that T must implement the Drop trait. The correct function definition of largest_list is as follows:

fn largest_list<T, impl TDrop: Drop<T>>(l1: Array<T>, l2: Array<T>) -> Array<T> {
    if l1.len() > l2.len() {
        l1
    } else {
        l2
    }
}

The new largest_list function includes in its definition the requirement that whatever generic type is placed there, it must be droppable. This is what we call trait bounds. The main function remains unchanged, the compiler is smart enough to deduce which concrete type is being used and if it implements the Drop trait.

Constraints for Generic Types

When defining generic types, it is useful to have information about them. Knowing which traits a generic type implements allows us to use it more effectively in a function's logic at the cost of constraining the generic types that can be used with the function. We saw an example of this previously by adding the TDrop implementation as part of the generic arguments of largest_list. While TDrop was added to satisfy the compiler's requirements, we can also add constraints to benefit our function logic.

Imagine that we want, given a list of elements of some generic type T, to find the smallest element among them. Initially, we know that for an element of type T to be comparable, it must implement the PartialOrd trait. The resulting function would be:

// Given a list of T get the smallest one
// The PartialOrd trait implements comparison operations for T
fn smallest_element<T, impl TPartialOrd: PartialOrd<T>>(list: @Array<T>) -> T {
    // This represents the smallest element through the iteration
    // Notice that we use the desnap (*) operator
    let mut smallest = *list[0];

    // The index we will use to move through the list
    let mut index = 1;

    // Iterate through the whole list storing the smallest
    while index < list.len() {
        if *list[index] < smallest {
            smallest = *list[index];
        }
        index = index + 1;
    };

    smallest
}

fn main() {
    let list: Array<u8> = array![5, 3, 10];

    // We need to specify that we are passing a snapshot of `list` as an argument
    let s = smallest_element(@list);
    assert!(s == 3);
}

The smallest_element function uses a generic type T that implements the PartialOrd trait, takes a snapshot of an Array<T> as a parameter and returns a copy of the smallest element. Because the parameter is of type @Array<T>, we no longer need to drop it at the end of the execution and so we are not required to implement the Drop trait for T as well. Why does it not compile then?

When indexing on list, the value results in a snap of the indexed element, and unless PartialOrd is implemented for @T we need to desnap the element using *. The * operation requires a copy from @T to T, which means that T needs to implement the Copy trait. After copying an element of type @T to T, there are now variables with type T that need to be dropped, requiring T to implement the Drop trait as well. We must then add both Drop and Copy traits implementation for the function to be correct. After updating the smallest_element function the resulting code would be:

fn smallest_element<T, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>>(
    list: @Array<T>,
) -> T {
    let mut smallest = *list[0];
    let mut index = 1;

    while index < list.len() {
        if *list[index] < smallest {
            smallest = *list[index];
        }
        index = index + 1;
    };

    smallest
}

Anonymous Generic Implementation Parameter (+ Operator)

Until now, we have always specified a name for each implementation of the required generic trait: TPartialOrd for PartialOrd<T>, TDrop for Drop<T>, and TCopy for Copy<T>.

However, most of the time, we don't use the implementation in the function body; we only use it as a constraint. In these cases, we can use the + operator to specify that the generic type must implement a trait without naming the implementation. This is referred to as an anonymous generic implementation parameter.

For example, +PartialOrd<T> is equivalent to impl TPartialOrd: PartialOrd<T>.

We can rewrite the smallest_element function signature as follows:

fn smallest_element<T, +PartialOrd<T>, +Copy<T>, +Drop<T>>(list: @Array<T>) -> T {
    let mut smallest = *list[0];
    let mut index = 1;
    loop {
        if index >= list.len() {
            break smallest;
        }
        if *list[index] < smallest {
            smallest = *list[index];
        }
        index = index + 1;
    }
}

Structs

We can also define structs to use a generic type parameter for one or more fields using the <> syntax, similar to function definitions. First, we declare the name of the type parameter inside the angle brackets just after the name of the struct. Then we use the generic type in the struct definition where we would otherwise specify concrete data types. The next code example shows the definition Wallet<T> which has a balance field of type T.

#[derive(Drop)]
struct Wallet<T> {
    balance: T,
}

fn main() {
    let w = Wallet { balance: 3 };
}

El código anterior deriva el trait Drop para el tipo Wallet automáticamente. Es equivalente a escribir el siguiente código:

struct Wallet<T> {
    balance: T,
}

impl WalletDrop<T, +Drop<T>> of Drop<Wallet<T>>;

fn main() {
    let w = Wallet { balance: 3 };
}

Evitamos el uso de la macro derive para la implementación de Drop de Wallet y en su lugar definimos nuestra propia implementación de WalletDrop. Nótese que debemos definir, al igual que en las funciones, un tipo genérico adicional para WalletDrop diciendo que T también implementa el trait Drop. Básicamente estamos diciendo que la estructura Wallet<T> es dropeable siempre y cuando T también lo sea.

Finalmente, si queremos añadir un campo a Wallet que represente su dirección y queremos que ese campo sea diferente de T pero genérico también, podemos simplemente añadir otro tipo genérico entre el <>:

#[derive(Drop)]
struct Wallet<T, U> {
    balance: T,
    address: U,
}

fn main() {
    let w = Wallet { balance: 3, address: 14 };
}

We add to the Wallet struct definition a new generic type U and then assign this type to the new field member address. Notice that the derive attribute for the Drop trait works for U as well.

Enums

Como hicimos con las estructuras, podemos definir enumeraciones para contener tipos de datos genéricos en sus variantes. Por ejemplo, la enumeración Option<T> proporcionada por la biblioteca central de Cairo:

enum Option<T> {
    Some: T,
    None,
}

El enum Option<T> es genérico sobre un tipo T y tiene dos variantes: Some, que contiene un valor de tipo T, y None, que no contiene ningún valor. Al utilizar el enum Option<T>, es posible expresar el concepto abstracto de un valor opcional y debido a que el valor tiene un tipo genérico T, podemos utilizar esta abstracción con cualquier tipo.

Enums can use multiple generic types as well, like the definition of the Result<T, E> enum that the core library provides:

enum Result<T, E> {
    Ok: T,
    Err: E,
}

El enum Result<T, E> tiene dos tipos genéricos, T y E, y dos variantes: Ok que tiene el valor de tipo T y Err que tiene el valor de tipo E. Esta definición hace que sea conveniente usar el enum Result en cualquier lugar donde tengamos una operación que pueda tener éxito (devolviendo un valor de tipo T) o fallar (devolviendo un valor de tipo E).

Generic Methods

We can implement methods on structs and enums, and use the generic types in their definitions, too. Using our previous definition of Wallet<T> struct, we define a balance method for it:

#[derive(Copy, Drop)]
struct Wallet<T> {
    balance: T,
}

trait WalletTrait<T> {
    fn balance(self: @Wallet<T>) -> T;
}

impl WalletImpl<T, +Copy<T>> of WalletTrait<T> {
    fn balance(self: @Wallet<T>) -> T {
        return *self.balance;
    }
}

fn main() {
    let w = Wallet { balance: 50 };
    assert!(w.balance() == 50);
}

We first define WalletTrait<T> trait using a generic type T which defines a method that returns the value of the field balance from Wallet. Then we give an implementation for the trait in WalletImpl<T>. Note that you need to include a generic type in both definitions of the trait and the implementation.

We can also specify constraints on generic types when defining methods on the type. We could, for example, implement methods only for Wallet<u128> instances rather than Wallet<T>. In the code example, we define an implementation for wallets which have a concrete type of u128 for the balance field.

#[derive(Copy, Drop)]
struct Wallet<T> {
    balance: T,
}

/// Generic trait for wallets
trait WalletTrait<T> {
    fn balance(self: @Wallet<T>) -> T;
}

impl WalletImpl<T, +Copy<T>> of WalletTrait<T> {
    fn balance(self: @Wallet<T>) -> T {
        return *self.balance;
    }
}

/// Trait for wallets of type u128
trait WalletReceiveTrait {
    fn receive(ref self: Wallet<u128>, value: u128);
}

impl WalletReceiveImpl of WalletReceiveTrait {
    fn receive(ref self: Wallet<u128>, value: u128) {
        self.balance += value;
    }
}

fn main() {
    let mut w = Wallet { balance: 50 };
    assert!(w.balance() == 50);

    w.receive(100);
    assert!(w.balance() == 150);
}

The new method receive increments the size of balance of any instance of a Wallet<u128>. Notice that we changed the main function making w a mutable variable in order for it to be able to update its balance. If we were to change the initialization of w by changing the type of balance the previous code wouldn't compile.

Cairo allows us to define generic methods inside generic traits as well. Using the past implementation from Wallet<U, V> we are going to define a trait that picks two wallets of different generic types and creates a new one with a generic type of each. First, let's rewrite the struct definition:

struct Wallet<T, U> {
    balance: T,
    address: U,
}

Next, we are going to naively define the mixup trait and implementation:

// This does not compile!
trait WalletMixTrait<T1, U1> {
    fn mixup<T2, U2>(self: Wallet<T1, U1>, other: Wallet<T2, U2>) -> Wallet<T1, U2>;
}

impl WalletMixImpl<T1, U1> of WalletMixTrait<T1, U1> {
    fn mixup<T2, U2>(self: Wallet<T1, U1>, other: Wallet<T2, U2>) -> Wallet<T1, U2> {
        Wallet { balance: self.balance, address: other.address }
    }
}

We are creating a trait WalletMixTrait<T1, U1> with the mixup<T2, U2> method which given an instance of Wallet<T1, U1> and Wallet<T2, U2> creates a new Wallet<T1, U2>. As mixup signature specifies, both self and other are getting dropped at the end of the function, which is why this code does not compile. If you have been following from the start until now you would know that we must add a requirement for all the generic types specifying that they will implement the Drop trait for the compiler to know how to drop instances of Wallet<T, U>. The updated implementation is as follows:

trait WalletMixTrait<T1, U1> {
    fn mixup<T2, +Drop<T2>, U2, +Drop<U2>>(
        self: Wallet<T1, U1>, other: Wallet<T2, U2>,
    ) -> Wallet<T1, U2>;
}

impl WalletMixImpl<T1, +Drop<T1>, U1, +Drop<U1>> of WalletMixTrait<T1, U1> {
    fn mixup<T2, +Drop<T2>, U2, +Drop<U2>>(
        self: Wallet<T1, U1>, other: Wallet<T2, U2>,
    ) -> Wallet<T1, U2> {
        Wallet { balance: self.balance, address: other.address }
    }
}

Sí, agregamos los requisitos para que T1 y U1 sean droppables en la declaración de WalletMixImpl. Luego hacemos lo mismo para T2 y U2, esta vez como parte de la firma de mixup. Ahora podemos probar la función mixup:

fn main() {
    let w1: Wallet<bool, u128> = Wallet { balance: true, address: 10 };
    let w2: Wallet<felt252, u8> = Wallet { balance: 32, address: 100 };

    let w3 = w1.mixup(w2);

    assert!(w3.balance);
    assert!(w3.address == 100);
}

Primero creamos dos instancias: una de Wallet<bool, u128> y la otra de Wallet<felt252, u8>. Luego, llamamos a mixup y creamos una nueva instancia de Wallet<bool, u8>.